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1. Introduction

The POWHEG method, first suggested in ref. [1], has been successfully applied to Z pair

production [2], heavy-flavour production [3] and e+e− annihilation into hadrons [4]. In

ref. [5] a general description of the method was given, and in particular its implementation

within the Catani-Seymour (CS) subtraction scheme [6] and within the Frixione-Kunszt-

Signer (FKS) [7, 8] approach.

In this paper we present an implementation of the W and Z hadroproduction cross

section in the POWHEG framework, using the CS subtraction formalism. All next-to-leading-

order (NLO) calculations used in POWHEG until now have been performed in the FKS

method. In view of the popularity of the CS scheme, we find desirable to explore more in

detail its use within POWHEG. In ref. [5] an outline of the implementation of the Drell-Yan

production cross section in POWHEG in the CS scheme was given. In the present work we

depart slightly from that approach. In particular, we use a more appropriate form of the
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hardness variable used for the generation of radiation. As a further point, for the case of

W production, if angular correlations in decay products are correctly taken into account,

a new problem arises. In fact, the Born-level W cross section vanishes when the fermion

decay products are exactly in the opposite direction of the incoming quark-antiquark pair,

which causes a problem in the generation of radiation within the POWHEG method. We show

that this problem has a simple solution, that can be easily generalized to all cases in which

the Born cross section vanishes.

The paper is organized as follows. In section 2 we describe how we performed the

calculation for the NLO W and Z cross section. In section 3 we discuss the POWHEG

implementation and how to deal with vanishing Born cross sections. In section 4 we

show our results for several kinematic variables and compare them with MC@NLO [9] and

PYTHIA 6.4 [10]. Finally, in section 5, we give our conclusions.

2. Description of the calculation

2.1 Kinematics

2.1.1 Born kinematics

We begin by considering the Born process for the annihilation of a quark and an antiquark

into a lepton-antilepton pair1 q + q̄ → l + l. Following ref. [5], we denote by k⊕ and k⊖ the

incoming quark momenta, and by k1 and k2 the outgoing fermion momenta. We call K⊕

and K⊖ the incoming hadron momenta and define the momentum fractions x© as

k© = x©K© . (2.1)

We choose our reference frame with the z axis along the k⊕ direction. We introduce the

following variables

M2 = (k1 + k2)
2, Y =

1

2
log

(k1 + k2)
0 + (k1 + k2)

3

(k1 + k2)0 − (k1 + k2)3
, (2.2)

that characterize the invariant mass and rapidity of the virtual vector boson.2 We also intro-

duce the angle θl that represents the angle between the outgoing lepton and the k⊕ momen-

tum, in the centre-of-mass frame of the lepton pair. The azimuthal orientation of the decay

products is irrelevant here, since the cross sections do not depend upon it. We thus fix it to

zero. At the end of the generation of the event, we perform a uniform, random azimuthal

rotation of the whole event, in order to cover all final-state phase space. The set of variables

M2, Y and θl fully parametrize our Born kinematics. From them we can reconstruct

x⊕ =

√

M2

S
eY , x⊖ =

√

M2

S
e−Y , (2.3)

1In case of W production the quark-antiquark and lepton-antilepton pairs have different flavour. We

focus here for simplicity on leptonic decays of the vector bosons. Hadronic decays are treated similarly.
2The virtuality of the lepton pair M2 will be distributed according to a Breit-Wigner formula around

the squared mass of the vector boson M2

V (where V stands for either the W± or the Z).
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where S = (K⊕ + K⊖)2. The leptons’ momenta are first reconstructed in the longitudinal

rest frame of the lepton pair, where each lepton has energy equal to M/2 and where the

lepton momentum forms an angle θl with the ⊕ direction and has zero azimuth (i.e. it lies

in the z, x plane and has positive x component). The leptons’ momenta are then boosted

with boost angle Y .

The Born phase space in terms of these variables is written as

dΦ2 = dx⊕ dx⊖(2π)4δ4(k⊕ + k⊖ − k1 − k2)
d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

=
1

S

1

16π
dM2 dY d cos θl

dφl

2π
. (2.4)

2.1.2 Real-emission kinematics

The real emission process is described by the final-state momenta k1, k2 and k3, where k1

and k2 have the same meaning as before, and k3 is the momentum of the radiated light

parton. In the POWHEG framework, applied in the context of the CS subtraction method,

one introduces a different real phase-space parametrization for each CS dipole. In the

present case, we have two CS dipoles, with the two incoming partons playing the role of

the emitter and the spectator. We consider the case of the ⊕ collinear direction. Thus, the

emitter is the incoming parton with momentum k⊕. We introduce the variable

x = 1 − (k⊕ + k⊖) · k3

k⊕ · k⊖

, (2.5)

and the momenta

K = k1 + k2 = k⊕ + k⊖ − k3 (2.6)

K̄ = x k⊕ + k⊖ . (2.7)

Observe that K2 = K̄2, which is the condition that fixes the value of x. When k3 is

collinear to k⊕ we have

xk⊕ = k⊕ − k3, (2.8)

and K = K̄. Following ref. [6], we introduce the boost tensor

Λµ
ν(K, K̄) = gµ

ν − 2(K + K̄)µ(K + K̄)ν
(K + K̄)2

+
2K̄µKν

K2
, (2.9)

the barred momenta

k̄µ
r = Λµ

ν(K, K̄) kν
r r = 1, 2, (2.10)

the barred-momentum fractions

x̄⊕ = xx⊕, x̄⊖ = x⊖ , (2.11)

and the barred incoming momenta

k̄⊕ = xk⊕ = x̄⊕K⊕, k̄⊖ = k⊖ = x̄⊖K⊖ . (2.12)
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The barred momenta characterize the underlying-Born kinematics. We define then

M̄2 = (k̄1 + k̄2)
2 = (k1 + k2)

2, Ȳ⊕ =
1

2
log

(k̄1 + k̄2)
0 + (k̄1 + k̄2)

3

(k̄1 + k̄2)0 − (k̄1 + k̄2)3
, (2.13)

and the angle θ̄l is defined as in the Born case, but in terms of the momenta k̄⊕, k̄⊖, k̄1

and k̄2.

The radiation variables are given by

x, v =
k⊕ · k3

k⊕ · k⊖

, φ, (2.14)

where φ is the azimuth of k3 around the z direction.

From the set of variables M̄2, Ȳ⊕, x, v and φ we can reconstruct the full production

kinematics for the real-emission cross section. We summarize the reconstruction proce-

dure from ref. [5]. From M̄2 and Ȳ we reconstruct the barred momenta, as for the Born

kinematics case. Then we reconstruct immediately

k⊕ =
k̄⊕

x
, k⊖ = k̄⊖, (2.15)

and then

k3 = vk⊖ + (1 − x − v)k⊕ + kT , (2.16)

where kT has only transverse components. Its magnitude is determined by the on shell

condition k2
3 = 0, which yields

k2
T = 2k⊕ · k⊖(1 − x − v)v (2.17)

and its azimuth is φ. We then construct the vectors

K = k⊕ + k⊖ − k3, K̄ = xk⊕ + k⊖, (2.18)

and the inverse boost

Λ−1
µν (K, K̄) = gµν − 2(K + K̄)µ(K + K̄)ν

(K + K̄)2
+

2KµK̄ν

K2
, (2.19)

from which we can compute the leptons’ momenta

kr = Λ−1(K, K̄) k̄r, r = 1, 2. (2.20)

The real-emission phase space can be expressed in a factorized form in terms of the under-

lying Born kinematics phase space and of the radiation variables

dΦ3 = dΦ̄2 dΦrad, (2.21)

with

dΦrad =
M̄2

16π2

dφ

2π
dv

dx

x2
θ(v) θ

(

1 − v

1 − x

)

θ(x(1 − x)) θ(x − x̄⊕) (2.22)
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and

dΦ̄2 =
1

S

1

16π
dM̄2 dȲ d cos θ̄l . (2.23)

The kinematic variables corresponding to the ⊖ collinear direction are reconstructed in full

analogy. Observe that the underlying-Born variables and the radiation variables depend in

general upon the collinear region that we are considering. In the present case, while M̄ , x

and φ are obviously independent of the region we are considering, Ȳ , θ̄l and v do depend

upon it. In order to avoid a too heavy notation, we have refrained from appending ⊕ or

⊖ indices to the underlying Born and radiation variables. When necessary, we will put a

[ ]© “context” bracket around a formula, meaning that the underlying Born and radiation

variables inside it should refer to the © direction.

2.2 Cross sections

We have used the helicity amplitude method of refs. [11, 12] in order to compute the

cross sections including the vector-boson decay products, and checked our results with

MadEvent [13]. For the W -boson propagator we have taken

−gµν + qµqν/M
2
W

q2 − M2
W + iΓW MW

(2.24)

and for the Z/γ-boson propagators, multiplied by the corresponding couplings,

gl gq
−gµν + qµqν/M

2
Z

q2 − M2
Z + iΓZMZ

+ el eq
−gµν

q2
, (2.25)

where gl, gq are the lepton and quark couplings to the Z (for given helicities), and el, eq

are their electric charges.

Following ref. [5], we introduce the Born Bqq̄ and the real-emission cross sections Rqq̄,g,

Rgq̄,q and Rqg,q̄, that represent the contributions for quark-antiquark, gluon-antiquark

and quark-gluon initiating processes. Notice that the flavour of the outgoing particle in

the subscript of R is also taken to be incoming. In the case of Z production, q and q̄

are conjugate in flavour. For W± production, because of flavour mixing, q and q̄ may

refer to different flavour species. We thus assume that, in general, q and q̄ may both

represent any flavour, but, in general, if q is a quark, q̄ is an antiquark, and viceversa.

B and R are obtained by taking the absolute value squared of the corresponding helicity

amplitude, summing over the helicities and colours of the outgoing particles, averaging over

the helicities and colour of the initial partons, and multiplying by the flux factor 1/(2s) (see

eq. (2.27)). The soft-virtual term in the CS approach is given by (see eq. (2.107) in ref. [5])

Vqq̄ =
αS

π
CFBqq̄ . (2.26)

Defining

s = (k⊕ + k⊖)2, u = (k⊕ − k3)
2 = −s v, t = (k⊖ − k3)

2 = −(1 − x − v) s, (2.27)

the CS subtraction terms are given by

C⊕

qq̄,g =

[

−1

u
2 g2

s CF

{

2

1 − x
− (1 + x)

}

Bqq̄(M̄ , Ȳ , θ̄l)

]

⊕

, (2.28)
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for gluon radiation from a qq̄ initial-state, and

Cgq̄,q =

[

−1

u
2 g2

s TF {1 − 2x (1 − x)}Bqq̄(M̄, Ȳ , θ̄l)

]

⊕

, (2.29)

for the gq̄. Analogous formulae apply for the qq̄ and the qg counterterms in the ⊖ collinear

direction.

The collinear remnants are given by

Gqq̄,g
⊕ (Φ2,⊕) =

αS

2π
CF

[(

2

1 − z
log

(1 − z)2

z

)

+

− (1 + z) log
(1 − z)2

z
+ (1 − z)

+

(

2

3
π2−5

)

δ(1−z)+

(

1+z2

1 − z

)

+

log
M2

µ2
F

]

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊕
, (2.30)

Ggq̄,q
⊕ (Φ2,⊕) =

αS

2π
TF

{

[

z2+(1−z)2
]

[

log
(1−z)2

z
+log

M2

µ2
F

]

+2z(1−z)

}

[

Bqq̄(M̄ , Ȳ , θ̄l)
]

⊕
.

(2.31)

The Φ2,⊕ notation, according to ref. [5], represents the set of variables

Φ2,⊕ = {x⊕, x⊖, z, k1, k2}, z x⊕K⊕ + x⊖K⊖ = k1 + k2 . (2.32)

We also associate an underlying Born configuration Φ̄2 to the Φ2,⊕ kinematics, defined by

k̄⊕ = z x⊕K⊕, k̄⊖ = x⊖K⊖, k̄1 = k1, k̄2 = k2 . (2.33)

The other two collinear remnants, Gqq̄,g
⊖ (Φ2,⊖) and Gqg,q̄

⊖ (Φ2,⊖), are equal to Gqq̄,g
⊕ (Φ2,⊕)

and Ggq̄,q
⊕ (Φ2,⊕) respectively, with

[

Bqq̄(M̄ , Ȳ , θ̄l)
]

⊕
replaced by

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊖
. We then

introduce the notation B, V , R, C, G, to stand for B, V, R, C, G, each multiplied by its

appropriate parton densities. The differential cross section, multiplied by some infrared

safe observable O, can then be written as

〈O〉 =
∑

qq̄

{

∫

dΦ2 [Bqq̄(Φ2) + Vqq̄(Φ2)] O(Φ2)

+

∫

dΦ3

{

Rqq̄,g(Φ3)O(Φ3) − C⊕

qq̄,g(Φ3)
[

O(Φ̄2)
]

⊕
− C⊖

qq̄,g(Φ3)
[

O(Φ̄2)
]

⊖

}

+

∫

dΦ3

{

Rgq̄,q(Φ3)O(Φ3) − Cgq̄,q(Φ3)
[

O(Φ̄2)
]

⊕

}

+

∫

dΦ3

{

Rqg,q̄(Φ3)O(Φ3) − Cqg,q̄(Φ3)
[

O(Φ̄2)
]

⊖

}

+

∫

dΦ2,⊕

[

Gqq̄,g
⊕ (Φ2,⊕) + Ggq̄,q

⊕ (Φ2,⊕)
]

O(Φ2,⊕)

+

∫

dΦ2,⊖

[

Gqq̄,g
⊖ (Φ2,⊖) + Gqg,q̄

⊖ (Φ2,⊖)
]

O(Φ2,⊖)

}

. (2.34)
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3. POWHEG implementation

The starting point of a POWHEG implementation is the inclusive cross section at fixed

underlying-Born flavour and kinematics. For the soft-virtual and Born contributions the

underlying Born kinematics is obviously given by the Born kinematics itself. For the

collinear remnant, for example, in the ⊕ direction (see eq. 2.32) the underlying Born kine-

matics is given by

Φ̄2 = {zx⊕, x⊖, k1, k2} . (3.1)

For the CS counterterms, the underlying Born kinematics is given by the corresponding

Φ̄2 variables defined in eqs. (2.11) and (2.12). In order to assign an underlying Born

kinematics to the real term, one has to decompose it into contributions that are singular

in only one kinematic region. Since Rgq̄,q and Rqg,q̄ are only singular in the ⊕ and ⊖

direction respectively, we assign their underlying Born to be the same of the corresponding

CS subtraction term. For Rqq̄,g, on the other hand, we separate:

Rqq̄,g = R⊕

qq̄,g + R⊖

qq̄,g, R©

qq̄,g = Rqq̄,g

C©

qq̄,g

C⊕

qq̄,g + C⊖

qq̄,g

, (3.2)

and assign to R©

qq̄,g the same underlying Born kinematics of the corresponding CS coun-

terterm C©

qq̄,g. The underlying Born flavour, on the other hand, is always qq̄ in the notation

we have adopted.

3.1 Generation of the Born variables

The primary ingredient for a POWHEG implementation is the B̄ function, that is the inclusive

cross section at fixed underlying Born variables. In our case, it is given by

B̄ =
∑

qq̄

B̄qq̄, (3.3)

B̄qq̄ = Bqq̄(Φ2) + Vqq̄(Φ2) +
∑

©

∫

[

dΦrad

{

R©

qq̄,g(Φ3) − C©

qq̄,g(Φ3)
}]

Φ̄2=Φ2

©
(3.4)

+

∫

[dΦrad {Rgq̄,q(Φ3)−Cgq̄,q(Φ3)}]Φ̄2=Φ2

⊕
+

∫

[dΦrad {Rqg,q̄(Φ3)−Cqg,q̄(Φ3)}]Φ̄2=Φ2

⊖

+

∫ 1

x̄⊕

dz

z

[

Gqq̄,g
⊕ (Φ2,⊕)+Ggq̄,q

⊕ (Φ2,⊕)
]

Φ̄2=Φ2 +

∫ 1

x̄⊖

dz

z

[

Gqq̄,g
⊖ (Φ2,⊖)+Gqg,q̄

⊖ (Φ2,⊖)
]

Φ̄2=Φ2

The radiation variables Φrad are parametrized in terms of three variables that span the unit

cube, Xrad = {X(1)
rad,X

(2)
rad,X

(3)
rad}, while the z variable is parametrized in term of a single

variable X
(1)
rad that ranges between 0 and 1. We then define the B̃ function

B̃qq̄ = Bqq̄(Φ2) + Vqq̄(Φ2) +
∑

©

[
∣

∣

∣

∣

∂Φrad

∂Xrad

∣

∣

∣

∣

{

R©

qq̄,g(Φ3) − C©

qq̄,g(Φ3)
}

]

Φ̄2=Φ2

©

+

[
∣

∣

∣

∣

∂Φrad

∂Xrad

∣

∣

∣

∣

{Rgq̄,q(Φ3)−Cgq̄,q(Φ3)}
]

Φ̄2=Φ2

⊕

+

[
∣

∣

∣

∣

∂Φrad

∂Xrad

∣

∣

∣

∣

{Rqg,q̄(Φ3) − Cqg,q̄(Φ3)}
]

Φ̄2=Φ2

⊖

– 7 –
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+

[

1

z

∂z

∂X
(1)
rad

{

Gqq̄,g
⊕ (Φ2,⊕)+Ggq̄,q

⊕ (Φ2,⊕)
}

]

Φ̄2=Φ2

⊕

+

[

1

z

∂z

∂X
(1)
rad

{

Gqq̄,g
⊖ (Φ2,⊖)+Gqg,q̄

⊖ (Φ2,⊖)
}

]

Φ̄2=Φ2

⊖

, (3.5)

so that defining B̃ =
∑

qq̄ B̃qq̄, we have

B̄ =

∫

d3Xrad B̃ . (3.6)

In practice, the B̃ function is integrated numerically over all Φ2,Xrad integration variables,

using an integration program that can generate the set of kinematic variables Φ2,Xrad,

with a probability proportional to dΦ2 d3Xrad B̃ in the dΦ2 d3Xrad kinematic cell (see, for

example, refs. [14, 15]). Once the Φ2,Xrad point is generated, the flavour qq̄ is chosen with

a probability proportional to the value of B̃qq̄ at that specific Φ2,Xrad point. At this stage,

the radiation variables are disregarded, and only the underlying Born ones are kept. This

corresponds to integrate over the radiation variables.

3.2 Generation of the radiation variables

Radiation kinematics is instead generated using the POWHEG Sudakov form factor

∆qq̄(Φ2, pT) =
∏

©

∆qq̄
© , (3.7)

where

∆qq̄
⊕ (Φ2, pT) = exp

{

−
[
∫

dΦrad

R⊕
qq̄,g(Φ3) + Rgq̄,q(Φ3)

Bqq̄(Φ2)
θ (kT(Φ3) − pT)

]Φ̄2=Φ2

⊕

}

(3.8)

∆qq̄
⊖ (Φ2, pT) = exp

{

−
[
∫

dΦrad

R⊖

qq̄,g(Φ3) + Rqg,q̄(Φ3)

Bqq̄(Φ2)
θ (kT(Φ3) − pT)

]Φ̄2=Φ2

⊖

}

(3.9)

The function kT (Φ3) measures the hardness of radiation in the real event. It is required

to be of the order of the transverse momentum of the radiation in the collinear limit, and

to become equal to it in the soft-collinear limit. In principle, the choice of kT (Φ3) can

differ in the two singular regions (⊕ and ⊖) that we are considering. The choice adopted

in the Examples section of ref. [5] had in fact this feature. We have found, however, that

for practical reasons3 it is better to adopt a different choice, namely to take kT (Φ3) to

coincide with that of eqs. (2.16) and (2.17).

The generation of radiation is performed individually for ∆qq̄
⊕ and ∆qq̄

⊖ , and the highest

generated kT is retained. The upper bounding function for the application of the veto

3The choice discussed in [5] is k2

T = M2(1−x)v, and is such that k2

T is always bound to be smaller than

M2. Since the factorization and renormalization scales are taken equal to kT , for vector-boson production

at transverse momenta much larger than the vector-boson mass the coupling does not properly decrease.
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method is chosen to be4

R⊕
qq̄,g + Rgq̄,q

Bqq̄
≤ 16π2

M2
N⊕

qq̄

αs(k
2
T )

2v

x2

1 − x − v
, (3.10)

and the analogous one for the ⊖ direction. The procedure used to generate radiation events

according to this upper bounding function is described in appendix A.

3.3 Born zeros

In case the Born cross section vanishes in particular kinematics points, a problem arises

in the POWHEG expression for the Sudakov form factor (3.8) and (3.9). It happens, in

fact, that although B vanishes, B̄ may differ from zero. Born kinematics configurations

with a vanishing Born cross section may thus be generated and, at the stage of radiation

generation, one would find very large ratios of the real-emission cross section over the Born

cross section. It would thus prove difficult to find a reasonable upper bound for this ratio.

If one tries to neglect the problem, radiation events with a vanishing underlying Born

configuration would never be generated. We observe that, in the limit of small hardness

parameter, the real cross section also exhibits the same vanishing behaviour of the Born

cross section. Loosely speaking, the problem arises when the distance of the underlying

Born configuration from the zero configuration is smaller than the distance of the real

emission cross section from the singular (i.e. zero hardness) configuration. In order to solve

this problem, in a completely general way, we further decompose the real cross section

contribution as (we use the notation of ref. [5])

Rαr = Rαr ,s + Rαr ,r, (3.11)

where

Rαr,s = Rαr
Z

Z + H
, Rαr,r = Rαr

H

Z + H
. (3.12)

The suffixes s and r stand for “singular” and “regular” respectively, and Z is a function

of the kinematics that vanishes like the Born cross section, evaluated at the underlying

Born kinematics of the given term. H is the hardness of radiation and it must vanish for

vanishing transverse momentum of the radiation. The simplest possible choice would be

Z = B
k2

T,max

Bmax
, H = k2

T , (3.13)

where kT is some definition of the transverse momentum of the radiation. Notice now that

Rαr ,s vanishes as fast as the Born term when its underlying Born kinematics approaches

the Born zero. It can thus be used in the expression for the Sudakov form factor (eqs. (3.8)

and (3.9)) without problems. The Rαr ,r is instead non-vanishing, but, on the other hand,

it does not have collinear or soft singularities because of the H factor, and thus it can be

4This upper bounding function differs from the ones of eqs. (7.163)–(7.166) in ref. [5], but is in fact

equivalent to the bound of eq. (7.234) in the same reference, once the change of variables ξ = 1 − x,

y = (1−2v−x)/(1−x) is performed, and the different definitions of dΦrad are properly taken into account.
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computed directly, without any Sudakov form factor. In the case of W production, the Born

zero is associated to θ̄l = 0 if q is an antiquark, and θ̄l = π if it is a quark. We choose then

Z = M2
(

1 + sq cos θ̄l

)2
, H = k2

T , (3.14)

with k2
T given by formula (2.17) and the factor sq equals 1 for quark, and −1 for antiquark.

The angle θ̄l is chosen according to the ⊕ parametrization (for R⊕) or the ⊖ parametrization

(for R⊖) of the real-emission phase space.

In addition, all the Rαr terms in eq. (3.3) are replaced by the corresponding Rαr ,s and

the Rαr,r terms are generated in a way similar to what was done for eq. (3.5). In other

words one defines

B̃r =
∑

qq̄

B̃r
qq̄ =

∑

qq̄

{

[
∣

∣

∣

∣

∂Φrad

∂Xrad

∣

∣

∣

∣

R⊕,r
qq̄,g(Φ3)

]

Φ̄2=Φ2

⊕

+

[
∣

∣

∣

∣

∂Φrad

∂Xrad

∣

∣

∣

∣

R⊖,r
qq̄,g(Φ3)

]

Φ̄2=Φ2

⊖

+

[∣

∣

∣

∣

∂Φrad

∂Xrad

∣

∣

∣

∣

Rr
gq̄,q(Φ3)

]

Φ̄2=Φ2

⊕

+

[∣

∣

∣

∣

∂Φrad

∂Xrad

∣

∣

∣

∣

Rr
qg,q̄(Φ3)

]

Φ̄2=Φ2

⊖

}

, (3.15)

and integrates over the whole Φ2,Xrad phase space with the same method used for B̃. In

order to generate an event, one chooses B̃ or B̃r, with a probability proportional to their

respective total integral. In case B̃r is chosen, one generates a kinematic configuration

according to it. This kinematic configuration is a full 3-body configuration. The flavour qq̄

is chosen with a probability proportional to the value of B̃r
qq̄ for the particular kinematic

point that has been generated, and the event is sent to the output. In case B̃ is chosen, a

kinematic configuration and an underlying Born flavour is chosen in the same way.

4. Results

The MC@NLO program provides an implementation of vector-boson production at the NLO

level in a shower Monte Carlo framework. It should therefore be comparable to our calcula-

tion, and we thus begin by comparing MC@NLO and POWHEG distributions. In this comparison,

the POWHEG code is interfaced to HERWIG [16, 17], in order to minimize differences due to

the subsequent shower in the two approaches. We choose as our default parton-density

functions the CTEQ6M [18] package, and the corresponding value of ΛQCD. The factor-

ization and renormalization scales are taken equal to M2
V + (pV

T )2 in the calculation of the

B̄ function, where V = W or Z. In the generation of radiation, the factorization and

renormalization scales are taken equal to the transverse momentum of the vector boson V .

We also account properly for the heavy-flavour thresholds, when the transverse momentum

of the vector boson approaches the bottom and charm quark threshold. That is to say,

when the renormalization scale crosses a heavy-flavour mass threshold, the QCD evolution

of the running coupling is accordingly changed to the new number of active flavours.

The other relevant parameters for our calculation are listed in table 1 and are used in

eqs. (2.24) and (2.25). The W and Z couplings are given by

g =
e

sin θeff
W

, gl/q =
e

sin θeff
W cos θeff

W

[

T
(l/q)
3 − ql/q sin2 θeff

W

]

, e =
√

4παem(MZ) , (4.1)
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Mz (GeV) ΓZ (GeV) MW (GeV) ΓW (GeV) sin2 θeff
W α−1

em(MZ)

91.188 2.49 80.419 2.124 0.23113 127.934

Table 1: Values of the physical parameters used throughout the paper.

ud us ub cd cs cb td ts tb

0.9748 0.2225 0.0036 0.2225 0.9740 0.041 0.009 0.0405 0.9992

Table 2: Absolute values of the CKM matrix elements used for W production.

where l/q denotes the given left or right component of a lepton or a quark. In table 2, we

have collected the absolute values for the CKM matrix elements, used for W production.

In all figures shown in the following we do not impose any acceptance cut.

4.1 Z production at the Tevatron

In figure 1 we show a comparison of the lepton transverse momentum and rapidity, and

of the transverse momentum of the reconstructed lepton-antilepton pair at the Tevatron.

We notice a larger cross section in POWHEG, when the Z transverse momentum becomes

large. This is not unexpected, since for large momenta the POWHEG result is larger than

the standard NLO result by a factor B̄/B (this feature has also some impact upon the

transverse-momentum distribution of the lepton). Once this fact is accounted for, the

transverse-momentum distribution of the Z is in fair agreement, although we find observ-

able shape differences at low transverse momenta. We also notice a peak at pT = 0 in the

MC@NLO distribution, that is not present in the POWHEG result. We expect this distribution to

be affected by low transverse-momentum power-suppressed effects. In fact, the peak at zero

transverse momentum in MC@NLO disappears if the primordial transverse momentum of the

partons (the PTRMS variable in HERWIG) is set to a non-zero value. In figure 2 we compare

the rapidity distribution of the reconstructed Z, its invariant mass, the azimuthal distance

of the e+e− pair coming from Z decays, and the transverse momentum of the radiated jet

at the Tevatron. The jet is defined using the SISCONE algorithm [19] as implemented in

the FASTJET package [20], using R = 0.7. We find again fair agreement.

In ref. [21], a discrepancy was found in the rapidity distribution of the hardest radiated

jet as computed in MC@NLO and ALPGEN, for the case of top pair production at the Tevatron.

The MC@NLO calculation shows there a dip at zero rapidity, not present in ALPGEN. In fact,

the POWHEG calculation of this quantity does not display any dip. We thus examine the

transverse momentum of the radiated jet in this case. Furthermore, we also plot the rapidity

difference between the Z and the hardest radiated jet. The results are displayed in figure 3.

We have chosen different cuts for the minimum transverse momentum of the radiated jet,

i.e. 10, 20, 40, 60 and 80 GeV. We observe noticeable differences in the rapidity distribution

of the hardest jet in the two approaches. The MC@NLO result displays a dip at zero yjet−yZ .

4.2 Z production at the LHC

Similar results are reported for the LHC in figure 4 through 6.

– 11 –
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Figure 1: Comparison between POWHEG and MC@NLO results for the transverse momentum and

rapidity of the lepton coming from the decay of the Z boson, and for the transverse momentum

of the Z, as reconstructed from its decay products. The lepton-rapidity asymmetry is also shown.

Plots done for the Tevatron pp̄ collider.

We notice less pronounced differences (with respect to the Tevatron case) in the pT

spectrum of the Z boson. The discrepancy in the yjet distribution is still evident, although

the dip is barely noticeable in this case.

The same set of plots are also shown for a PYTHIA-POWHEG comparison in figure 7

through 10. In this case the POWHEG code was interfaced with PYTHIA. Photon radiation

from final-state leptons was switched off (MSTJ(41)=3), in order to simplify the analysis.

Furthermore, the new transverse-momentum ordered shower was used (i.e. the PYEVNW rou-

tine), since transverse-momentum ordering should be more appropriate in conjunction with

POWHEG. In the plots, the PYTHIA output is normalized to the POWHEG total cross section.

From figure 7 through 8, we can see a remarkable agreement between the two calcula-

tions for the Tevatron results, the only visible discrepancy being given by the transverse-

momentum distribution of the Z boson at small transverse momenta. We also notice that,

unlike the case of the MC@NLO-POWHEG comparison, the transverse-momentum distribution

of the Z is slightly harder in PYTHIA than in POWHEG. The rapidity distributions of the

hardest jet are also in remarkable agreement.

In figure 10 through 11, we carry out the same comparison in the LHC case. We notice

here few important differences in the rapidity distribution of the Z boson, and, probably

related to that, of the electron, the PYTHIA distribution being flatter in the central region.
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Figure 2: Comparison between POWHEG and MC@NLO for the reconstructed Z rapidity, its invariant

mass, the lepton-pair azimuthal distance and the transverse momentum of the reconstructed jet,

above a 10GeV minimum value.

Figure 3: Rapidity distribution of the hardest jet with different transverse-momentum cuts, and

the rapidity distance between the hardest jet and the reconstructed Z boson.

Both MC@NLO and POWHEG do not show this feature. As already pointed out in ref. [5], the

generation of vector bosons in PYTHIA is not very different from the POWHEG generation.

Radiation is generated with a very similar method [22, 23]. There are however differences.

In PYTHIA the Born inclusive cross section is used rather than our B̄ function. Further-

more, our choice of scales is constrained by the requirement of next-to-leading logarithmic

accuracy in the Sudakov form factor. The discrepancy in the transverse-momentum dis-
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Figure 4: Same as figure 1 for the LHC at 14TeV.

tribution of the Z may be due to different requirements for the choice of the scale in the

generation of radiation in the two algorithms. The discrepancy in the rapidity distribution

may be due to the lack of NLO corrections in PYTHIA, i.e. to the use of the Born cross sec-

tion (rather than the B̄ function) and LO parton densities. In fact, in figure 3 of ref. [24], a

comparison in the rapidity distribution of the Z at LO, NLO and NNLO, is shown for the

LHC. One can notice from that figure that there is a difference in the LO and NLO shape

of the distribution, the former being flatter. In order to elucidate this point, we show in

figure 13 the rapidity distribution of the Z boson computed at fixed order in QCD, at LO

and NLO. With the LO calculation, we also show the result obtained using the same LO

parton-distribution function (pdf) set used in PYTHIA, that is CTEQ5L. The figure leads

to the conclusion that the use of the LO parton-density set CTEQ5L is the primary cause

of this shape difference. We find, in fact, no difference in shape between the LO and NLO

result if the same pdf set is used instead. We thus conclude that also the effect observed in

figure 3 of ref. [24] is due to the use of a LO parton-density set together with the LO result.5

The predictions for the transverse-momentum distribution of the Z boson are summa-

rized in figure 14, in comparison with data from ref. [25], at
√

S = 1960 GeV and from

refs. [26 – 28] at
√

S = 1800 GeV. The POWHEG+HERWIG and the MC@NLO output are obtained

with an intrinsic transverse momentum of the incoming partons equal to 2.5 GeV (HERWIG’s

5Some authors do prefer to use LO parton-density functions in LO calculations, although, in our opinion,

there are no compelling reasons to do so.
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Figure 5: Same as figure 2 for the LHC at 14TeV.

Figure 6: Same as figure 3 at the LHC at 14TeV.

PTRMS parameter). Both data and predictions are normalized to 1. The difference in the

shape of the distributions at 1960 and 1800 GeV are only minimal. We see that POWHEG with

PYTHIA is in remarkable agreement with the MC@NLO result. On the other hand, standalone

PYTHIA is closer to the output of POWHEG with HERWIG. In all cases, the agreement with data

is not optimal. It is thus clear that this distribution is sensitive to long distance effects like

hadronization and transverse-momentum smearing, and good agreement with data may

only achieved by suitable tuning of the non-perturbative parameters of the shower Monte

Carlo.
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Figure 7: Same as figure 1 for a PYTHIA and POWHEG comparison at the Tevatron.

4.3 Hardest-jet rapidity distribution

The discrepancy of POWHEG and MC@NLO in the rapidity distribution of the hardest jet

deserves further discussion.6 In ref. [21], only the rapidity distribution of the hardest jet in

tt̄ production was considered, and a dip was found there, in the case of top-pair production

at Tevatron energies. In the present case we found no dip in the rapidity distribution of

the hardest jet in V production (see figure 3). We found instead a dip in the distribution

in the rapidity difference between the jet and the vector boson. It is reasonable to assume

that a dip in the rapidity distribution of the jet may be inherited from the dip in the

rapidity difference, if the kinematics production regime is forced to be central, like in the

case of top-pair production at the Tevatron. We thus also reconsider Z pair production and

tt̄ production at the Tevatron, and compare POWHEG and MC@NLO results for the rapidity

distribution of the hardest jet, and for the distribution in the rapidity difference. The

results are shown in figures 15 and 16.

From figure 15 we see that the dip present in the yjet − ytt̄ distribution is even deeper

than the dip observed in the yjet distribution. Furthermore, in figure 16, we see no particular

features in the yjet distribution. The yjet − yZZ distribution displays instead a tiny tower

and a dip, depending upon the transverse-momentum cut on the jet. A deeper study of

6The distribution in the pseudorapidity difference of the hardest jet with respect to the vector boson

was considered in ref. [29], in the context of a comparison of several matrix-element programs. Although

noticeable differences are found among the generators considered there, none of them exhibit a dip at zero

pseudorapidity.
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Figure 8: Same as figure 2 for a PYTHIA and POWHEG comparison at the Tevatron.

Figure 9: Same as figure 3 for a PYTHIA and POWHEG comparison at the Tevatron.

these features was performed in ref. [21], for tt̄ production. It was shown there that the

HERWIG Monte Carlo displays an even stronger dip than MC@NLO. The MC@NLO generator

provides more events that partially fill the dip, thus correcting the NLO inaccuracies of

the shower Monte Carlo. It is presumably a NNLO (next-to-next-to leading) mismatch

between the twos that generates these features. On the other hand, the POWHEG program,

as well as matrix-element generators, generate themselves the full NLO result, and thus are

not sensitive to this feature of HERWIG. We also stress that these features do not mean that

HERWIG is inaccurate at the LO level, or that MC@NLO is inaccurate at the NLO. A shower

Monte Carlo is accurate in the radiation of the hardest jet only in the collinear regions.
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Figure 10: Same as figure 1 for a PYTHIA and POWHEG comparison at the LHC.

Furthermore, the dip in the MC@NLO result is compatible with an effect beyond NLO.

4.4 W production at the Tevatron and LHC

All results presented so far are relative to Z boson production. In the case of W production

we find similar features and the comparison between MC@NLO and PYTHIA presents very sim-

ilar characteristics. For the sake of completeness, we present in figure 17 through 34 plots of

observables for W− production at the Tevatron, and W− and W+ production at the LHC,

comparing again the POWHEG output with MC@NLO and PYTHIA, and the observables for W+

production at the LHC. We find again that MC@NLO displays dips in the rapidity distribu-

tion of the hardest jet at Tevatron energy. The comparison of the transverse-momentum

distribution of the W shows the same differences found in the Z case. Furthermore, the

rapidity distribution of the W± at the LHC differs in PYTHIA, showing a very marked dif-

ference in the W+ case (see figure 33), probably (as in the Z case) a consequence of the

different pdf set.
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Figure 11: Same as figure 2 for a PYTHIA and POWHEG comparison at the LHC.

Figure 12: Same as figure 3 for a PYTHIA and POWHEG comparison at the LHC.
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Figure 13: Rapidity distribution for the Z boson, computed at fixed order at LO and NLO. For

the LO result, both the CTEQ6M and the CTEQ5L parton-density set were used. The plots are

normalized to the NLO total cross section.

Figure 14: Comparison of transverse-momentum distributions of the Z bosons with data from

the Tevatron.

Figure 15: Rapidity distribution of the hardest jet and of the rapidity difference between the

hardest jet and the tt̄ system at Tevatron energies.

– 20 –



J
H
E
P
0
7
(
2
0
0
8
)
0
6
0

Figure 16: Rapidity distribution of the hardest jet and of the rapidity difference between the

hardest jet and the ZZ system at Tevatron energies.

Figure 17: Comparison of POWHEG and MC@NLO results for the transverse momentum and rapidity

of the lepton coming from the decay of the W− boson and for the transverse momentum of the

W−, as reconstructed from its decay product.
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Figure 18: Comparison of POWHEG and MC@NLO for the reconstructed W− rapidity, its invariant

mass, the lepton-pair azimuthal distance and the transverse momentum of the reconstructed jet,

above a 10GeV minimum value.

Figure 19: Rapidity distribution of the hardest jet with different transverse-momentum cuts,

and the rapidity distance between the hardest jet and the reconstructed W− boson for POWHEG and

MC@NLO at the Tevatron.
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Figure 20: Same as figure 17 for the LHC at 14TeV.

Figure 21: Same as figure 18 for the LHC at 14TeV.
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Figure 22: Same as figure 19 at the LHC at 14TeV.

Figure 23: Same as figure 17 for a PYTHIA and POWHEG comparison at the Tevatron.
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Figure 24: Same as figure 18 for a PYTHIA and POWHEG comparison at the Tevatron.

Figure 25: Same as figure 19 for a PYTHIA and POWHEG comparison at the Tevatron.
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Figure 26: Same as figure 17 for a PYTHIA and POWHEG comparison at the LHC.

Figure 27: Same as figure 18 for a PYTHIA and POWHEG comparison at the LHC.
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Figure 28: Same as figure 19 for a PYTHIA and POWHEG comparison at the LHC.

Figure 29: Same as figure 20 for W+ production at the LHC.

5. Conclusions

In this paper we have reported on a complete implementation of vector-boson production

at NLO in the POWHEG framework. The calculation was performed within the Catani-

Seymour [6] dipole approach, and thus this is the first POWHEG implementation within the

Catani-Seymour framework at a hadronic collider. We have found that, at variance with

what was proposed in section 7.3 of ref. [5], it is better to define the transverse momentum

as the true transverse momentum for the initial-state singular region. Furthermore, we

have shown how to perform a POWHEG implementation when the Born term vanishes.
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Figure 30: Same as figure 21 for W+ production at the LHC.

Figure 31: Same as figure 22 for W+ production at the LHC.

The results of our work have been compare extensively with MC@NLO and PYTHIA. The

PYTHIA result, rescaled to the full NLO cross section, is in good agreement with POWHEG,

except for differences in the rapidity distribution of the vector boson, that may be ascribed

to the use of a LO parton density in PYTHIA. The MC@NLO result is in fair agreement

with POWHEG, except for the distribution of the hardest jet in the process, the MC@NLO

distribution being generally wider. Furthermore, we have also examined the distributions in

the difference of the hardest jet and the vector-boson rapidity. We have found that MC@NLO

distributions exhibit dips at zero rapidity. We have also examined analogous distributions
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Figure 32: Same as figure 26 for W+ production at the LHC.

for ZZ and tt̄ production, and again found dips for these distributions, that seem to be a

general feature of the MC@NLO approach. We also remark that no other approaches show

dips of this kind [29].

The computer code for the POWHEG implementations presented here is available, to-

gether with the manual, at the site http://moby.mib.infn.it/∼nason/POWHEG/.
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A. Upper bounding function

We call ∆U (p2
T ) the Sudakov form factor obtained with the upper bounding function of

eq. (3.10). Using the definitions of eqs. (2.22) and (2.17)

dΦrad =
M2

16π2

dφ

2π
dv

dx

x2
θ(v) θ

(

1 − v

1 − x

)

θ(x(1 − x)) θ(x − x̄⊕) (A.1)
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Figure 33: Same as figure 27 for W+ production at the LHC.

Figure 34: Same as figure 28 for W+ production at the LHC.

k2
T =

M2

x
(1 − x − v) v , (A.2)

we write

log ∆U (p2
T )

−N
=

∫ 1

x̄

dx

x2

∫ 1−x

0
dv

αs(k
2
T )

2v

x2

1 − x − v
θ
(

k2
T − p2

T

)

=

∫ 1

x̄

dx

x

∫ 1−x

0
dv

αs(k
2
T )

2

M2

k2
T

θ
(

k2
T − p2

T

)
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=

∫ ∞

p2

T

dk2
T

k2
T

αs(k
2
T )

2

∫ 1

0
dv

∫ 1

x̄

dx

x
θ(1 − x − v)M2 δ

(

M2

x
(1 − x − v)v − k2

T

)

,

where, for ease of notation, we have dropped the © and qq̄ labels on N and x̄. We perform

the x integration using the δ function

∫

dx

x
M2 δ

(

M2

x
(1 − x − v)v − k2

T

)

=
1

k2
T /M2 + v

, x =
M2v(1 − v)

k2
T + M2v

. (A.3)

Notice that x < 1, and

θ

(

1 − v − M2v(1 − v)

k2
T + M2v

)

= θ

(

1 − v
k2

T + M2

k2
T + M2v

)

= 1. (A.4)

The only remaining condition on x is x > x̄. We thus get

log ∆U (p2
T )

−N
=

∫ ∞

p2

T

dk2
T

k2
T

αs(k
2
T )

2

∫ 1

0

dv

k2
T /M2 + v

θ

(

M2v(1 − v)

k2
T + M2v

− x̄

)

. (A.5)

We must find the conditions implied by the theta function upon v. For

k2
T < k2

T max =
M2(1 − x̄)2

4x̄
, (A.6)

the θ function is satisfied if v− < v < v+, where

v± =
1 − x̄ ±

√

(1 − x̄)2 − 4 x̄
k2

T

M2

2
. (A.7)

We thus have

log ∆U (p2
T )

−N
=

∫ k2

T max

p2

T

dk2
T

k2
T

αs(k
2
T )

2
log

k2

T

M2 + v+

k2

T

M2 + v−
. (A.8)

The k2
T integral is still too complex to be performed analytically. We thus resort another

time to the veto method, by finding an upper bound to the integrand. We have

k2

T

M2 + v+

k2

T

M2 + v−
6

k2

T

M2 + 1

k2

T

M2

=
M2

k2
T

+ 1 6
M2

k2
T

+
k2

T max

k2
T

=
M2(1 + x̄)2

4 x̄ k2
T

. (A.9)

We thus define

q2 =
M2(1 + x̄)2

4 x̄ k2
T

, (A.10)

and introduce a new Sudakov form factor

log ∆̃U (p2
T )

−N
=

∫ k2

T max

p2

T

dk2
T

k2
T

αU (k2
T )

2
log

q2

k2
T

, (A.11)

where αU (k2
T ) has the form of the one-loop running coupling constant

αU (k2
T ) =

1

b log
k2

T

Λ2

U

, (A.12)
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and is required to satisfy the bound αU (k2
T ) > αs(k

2
T ) in the allowed range for k2

T . The

integral in eq. (A.11) is now easily performed, and we get

∆̃U (p2
T ) = exp







−N

2b



log
q2

Λ2
U

log
log

k2

T max

Λ2

U

log
p2

T

Λ2

U

− log
k2

T max

p2
T











. (A.13)

The generation of the radiation variables is then performed starting with ∆̃U (p2
T ), using

the veto procedure to obtain the ∆U (p2
T ) distribution. Further vetoing is then used to

obtain the correct R/B generated distribution.
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